126 research outputs found

    Denial-of-Service Vulnerability of Hash-based Transaction Sharding: Attacks and Countermeasures

    Full text link
    Since 2016, sharding has become an auspicious solution to tackle the scalability issue in legacy blockchain systems. Despite its potential to strongly boost the blockchain throughput, sharding comes with its own security issues. To ease the process of deciding which shard to place transactions, existing sharding protocols use a hash-based transaction sharding in which the hash value of a transaction determines its output shard. Unfortunately, we show that this mechanism opens up a loophole that could be exploited to conduct a single-shard flooding attack, a type of Denial-of-Service (DoS) attack, to overwhelm a single shard that ends up reducing the performance of the system as a whole. To counter the single-shard flooding attack, we propose a countermeasure that essentially eliminates the loophole by rejecting the use of hash-based transaction sharding. The countermeasure leverages the Trusted Execution Environment (TEE) to let blockchain's validators securely execute a transaction sharding algorithm with a negligible overhead. We provide a formal specification for the countermeasure and analyze its security properties in the Universal Composability (UC) framework. Finally, a proof-of-concept is developed to demonstrate the feasibility and practicality of our solution

    Finding Community Structure with Performance Guarantees in Complex Networks

    Full text link
    Many networks including social networks, computer networks, and biological networks are found to divide naturally into communities of densely connected individuals. Finding community structure is one of fundamental problems in network science. Since Newman's suggestion of using \emph{modularity} as a measure to qualify the goodness of community structures, many efficient methods to maximize modularity have been proposed but without a guarantee of optimality. In this paper, we propose two polynomial-time algorithms to the modularity maximization problem with theoretical performance guarantees. The first algorithm comes with a \emph{priori guarantee} that the modularity of found community structure is within a constant factor of the optimal modularity when the network has the power-law degree distribution. Despite being mainly of theoretical interest, to our best knowledge, this is the first approximation algorithm for finding community structure in networks. In our second algorithm, we propose a \emph{sparse metric}, a substantially faster linear programming method for maximizing modularity and apply a rounding technique based on this sparse metric with a \emph{posteriori approximation guarantee}. Our experiments show that the rounding algorithm returns the optimal solutions in most cases and are very scalable, that is, it can run on a network of a few thousand nodes whereas the LP solution in the literature only ran on a network of at most 235 nodes

    On the Convergence of Distributed Stochastic Bilevel Optimization Algorithms over a Network

    Full text link
    Bilevel optimization has been applied to a wide variety of machine learning models, and numerous stochastic bilevel optimization algorithms have been developed in recent years. However, most existing algorithms restrict their focus on the single-machine setting so that they are incapable of handling the distributed data. To address this issue, under the setting where all participants compose a network and perform peer-to-peer communication in this network, we developed two novel decentralized stochastic bilevel optimization algorithms based on the gradient tracking communication mechanism and two different gradient estimators. Additionally, we established their convergence rates for nonconvex-strongly-convex problems with novel theoretical analysis strategies. To our knowledge, this is the first work achieving these theoretical results. Finally, we applied our algorithms to practical machine learning models, and the experimental results confirmed the efficacy of our algorithms

    Pseudo-Separation for Assessment of Structural Vulnerability of a Network

    Full text link
    Based upon the idea that network functionality is impaired if two nodes in a network are sufficiently separated in terms of a given metric, we introduce two combinatorial \emph{pseudocut} problems generalizing the classical min-cut and multi-cut problems. We expect the pseudocut problems will find broad relevance to the study of network reliability. We comprehensively analyze the computational complexity of the pseudocut problems and provide three approximation algorithms for these problems. Motivated by applications in communication networks with strict Quality-of-Service (QoS) requirements, we demonstrate the utility of the pseudocut problems by proposing a targeted vulnerability assessment for the structure of communication networks using QoS metrics; we perform experimental evaluations of our proposed approximation algorithms in this context

    QuTIE: Quantum optimization for Target Identification by Enzymes

    Full text link
    Target Identification by Enzymes (TIE) problem aims to identify the set of enzymes in a given metabolic network, such that their inhibition eliminates a given set of target compounds associated with a disease while incurring minimum damage to the rest of the compounds. This is an NP-complete problem, and thus optimal solutions using classical computers fail to scale to large metabolic networks. In this paper, we consider the TIE problem for identifying drug targets in metabolic networks. We develop the first quantum optimization solution, called QuTIE (Quantum optimization for Target Identification by Enzymes), to this NP-complete problem. We do that by developing an equivalent formulation of the TIE problem in Quadratic Unconstrained Binary Optimization (QUBO) form, then mapping it to a logical graph, which is then embedded on a hardware graph on a quantum computer. Our experimental results on 27 metabolic networks from Escherichia coli, Homo sapiens, and Mus musculus show that QuTIE yields solutions which are optimal or almost optimal. Our experiments also demonstrate that QuTIE can successfully identify enzyme targets already verified in wet-lab experiments for 14 major disease classes
    • …
    corecore